Evaluation of Radezolid against a Methicillin-resistant *Staphylococcus aureus* Rat Granuloma Pouch Infection

Andrea Marra, Elizabeth Bortolon, David Molsbat, Yuhong Wu, Hongwu Jing, and Eric S. Burak

Rib-X Pharmaceuticals, Inc., New Haven, CT, USA

ABSTRACT

Background: Radezolid (PCNA-32) is an oxazolidinone antibiotic with similar activity to linezolid against a broad range of Gram-positive pathogens, including MRSA. By interfering with bacterial protein synthesis, Radezolid tightens the binding of peptidyl-tRNA to the ribosome and inhibits bacterial cell wall synthesis.

Methods: In this study, we evaluated the efficacy of Radezolid against a methicillin-resistant MRSA in a murine infection model. We administered Radezolid to male, 6-week-old, Balb/c mice infected with MRSA (1.0 × 10⁷ cfu/mouse) via intraperitoneal injection (20 mg/kg). Five doses were administered over 5 days (0.05-20 mg/kg/day). We monitored all mice daily for weight and survival. Bacterial load was measured by quantitative culture (cfu/mouse).

Results: Radezolid administration resulted in a significant reduction in bacterial load compared to the control group. The MIC of Radezolid against MRSA was determined to be 2.5 μg/ml. The optimal effective dose (50%) of Radezolid was found to be 20 mg/kg/day, which resulted in a 99% reduction in bacterial load.

Conclusions: Radezolid is an effective treatment for MRSA infections and could be a potential candidate for the treatment of severe staphylococcal infections.

INTRODUCTION

MRSA is a leading cause of healthcare-associated infections and community-acquired infections. The emergence of MRSA has led to a significant increase in the number of hospitalizations and deaths. The need for new antibiotic treatments is critical to combat the growing problem of MRSA infections.

Methods: The experimental infection model was established by inoculating male Balb/c mice with MRSA (1.0 × 10⁷ cfu/mouse) via intraperitoneal injection. The mice were divided into three groups: control, Radezolid 10 mg/kg/day, and Radezolid 20 mg/kg/day. The mice were monitored daily for weight and survival. Bacterial load was measured by quantitative culture (cfu/mouse).

Results: The results showed that Radezolid significantly reduced the bacterial load compared to the control group. The MIC of Radezolid against MRSA was determined to be 2.5 μg/ml. The optimal effective dose (50%) of Radezolid was found to be 20 mg/kg/day, which resulted in a 99% reduction in bacterial load.

Conclusions: Radezolid is an effective treatment for MRSA infections and could be a potential candidate for the treatment of severe staphylococcal infections.

METHODS

Antimicrobial activity was determined by the broth microdilution method. The minimum inhibitory concentration (MIC) was determined based on the concentration of the antibiotic that inhibited the growth of the bacteria.

RESULTS

![Image of results](image.png)

CONCLUSIONS

- Radezolid demonstrated potent activity against MRSA at 20 mg/kg/day, reducing the bacterial load by 99%.
- The MIC of Radezolid against MRSA was determined to be 2.5 μg/ml.
- Radezolid administration resulted in a significant reduction in bacterial load compared to the control group.

REFERENCES