In vitro Evaluation of Delafloxacin Activity When Tested against Contemporary ABSSSI Isolates from Europe and Surrounding Areas (2014-2016): Results from the SENTRY Antimicrobial Surveillance Program

MO HUBAND, JM STREIT, D SHORTRIDGE, RK FLAMM
JMI Laboratories, North Liberty, Iowa, United States

Introduction

Delafloxacin is a broad-spectrum anionic fluoroquinolone (FQ) antibacterial in late-phase clinical development (mid and late-stage clinical development for the treatment of Gram-positive infections) that may offer an advantage over other fluoroquinolones through its novel residual activity and favorable pharmacodynamics.

Materials and Methods

• Bacterial isolates were identified by the submitting laboratories and confirmed by JMI laboratories using standard procedures.

Results

Table 1 Activity of delafloxacin and comparator agents against key organisms groups from Europe in 2014-2016

<table>
<thead>
<tr>
<th>Organism (no. tested)</th>
<th>Delafloxacin</th>
<th>Ciprofloxacin</th>
<th>Moxifloxacin</th>
<th>Levofloxacin</th>
<th>Tetracycline</th>
<th>Daptomycin</th>
<th>Tigecycline</th>
<th>Meropenem</th>
<th>Clindamycin</th>
<th>Linezolid</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli (MRSA) 177</td>
<td>0.25</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
</tr>
<tr>
<td>P. aeruginosa 173</td>
<td>0.008</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
</tr>
<tr>
<td>S. aureus 867</td>
<td>0.008</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
</tr>
<tr>
<td>K. pneumoniae 397</td>
<td>0.008</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
</tr>
<tr>
<td>S. pneumoniae 345</td>
<td>0.008</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
</tr>
<tr>
<td>S. marcescens 268</td>
<td>0.008</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
</tr>
</tbody>
</table>

Conclusions

• Delafloxacin demonstrated potent in vitro activity against fluoroquinolone-resistant strains, including those with reduced susceptibility to fluoroquinolones.

Acknowledgements

The study and laboratory work was sponsored by microbiology research grant from Biopharma Therapeutics, Inc.

References

Eccmids 2017 poster P1351

Revised Abstract

Background: Delafloxacin is a novel spectrum fluoroquinolone (FQ) antibacterial in late-stage clinical development (mid and late-stage clinical development for the treatment of Gram-positive infections) that may offer an advantage over other fluoroquinolones through its novel residual activity and favorable pharmacodynamics.

Methods: A total of 1,120 isolates, 248 non-haemolytic streptococci, 275 β-haemolytic streptococci, viridans group streptococci, 173 S. aureus, 173 E. faecalis, 173 E. coli, 177 MR-CoNS, 867 Enterobacteriaceae, and 275 Pseudomonas aeruginosa were tested. All clinical isolates were tested against delafloxacin using broth microdilution (M100-S27, 2017) and/or molecular characterization. The results were interpreted using Etest (CT201631), pharmacodynamics, and/or molecular characterization. Sensitivity testing was performed according to CLSI standards and/or clinical breakpoints, and were interpreted per Etest (CT201631).

Results: Delafloxacin demonstrated potent in vitro activity against fluoroquinolone-resistant strains, including those with reduced susceptibility to fluoroquinolones.

Conclusion: Delafloxacin demonstrated potent in vitro antibacterial activity against FQ-susceptible and resistant bacteria, both Gram-positive and Gram-negative, isolated from the clinical microbiology laboratories participating in the SENTRY Antimicrobial Surveillance Program (2014-2016) and/or molecular characterization.