Acinetobacter baumannii pneumonia (CAP) is among the most common and serious infections requiring systemic antibiotic therapy and is associated with significant morbidity and mortality, despite therapeutic advances.

The emergence and spread of respiratory pathogens resistant to antibiotics and other classes of antibiotics has begun to limit therapeutic options for CAP.

A macrolide with improved activity, a better safety profile and availability in both intravenous (IV) and oral formulations would be a significant therapeutic advance in the treatment of CAP.

Solithromycin (SOLI), a fourth-generation macrolide, with potent in vitro activity against CAP pathogens, including atypical bacteria and macrolide-resistant strains, is being developed in oral and IV formulations.

Phase 3 Trials in CAP:

- **MOXI**, a potent fluoroquinolone, was selected as the comparator because of its proven effectiveness in CAP and the ability to study both oral and IV formulations worldwide with a consistent dose regimen.
- **SOLI** demonstrated clinical non-inferiority to oral moxifloxacin in treating adults with CAP in the outpatient setting (SOLITAIRE-Oral trial).
- **SOLITAIRE IV** was a global non-inferiority trial of IV-to-oral SOLI versus MOXI.

Methods

Study Design: The SOLITAIRE IV trial was conducted under the new FDA CABP Guidance with clinical outcomes measured using an objective endpoint of early clinical response (ECR) at 72 h post-dose. All 263 patients with confirmed CAP (PORT II to IV) were randomized between January 2014 and July 2015 to receive IV SOLI or MOXI on Day 1 and were permitted to switch to oral dosing on subsequent days.

Screening Baseline

<table>
<thead>
<tr>
<th>Day</th>
<th>ECR</th>
<th>End of Treatment (EOT)</th>
<th>Day 7</th>
<th>Short-term Follow-up (SFU)</th>
<th>Day 15</th>
<th>Long-term Follow-up (LFU)</th>
<th>Day 28-32</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microbiological Assessments

- A variety of techniques were used to enhance the detection of pathogens:
 - blood and sputum culture
 - urinary antigen test (EA) - S. pneumoniae and L. pneumophila
 - serology (4-fold rise in titer at LFU) - L. pneumophila and M. pneumoniae
 - quantitative PCR of nasopharyngeal swabs for S. pneumoniae
 - culture and qPCR of oropharyngeal swabs for M. pneumoniae

Analysis Populations

- The ITT (intention-to-treat) population consists of all randomized patients, the mITT (microbiological ITT) population consists of all randomized patients with a baseline pathogen identified, the CE (clinically evaluable) population consists of patients who met inclusion/exclusion criteria and had, with the exception of significant protocol deviations, the ME (microbiologically evaluable) population is the intersection of the ITT and CE populations.

Primary: Early clinical response (improvement of cough/ dyspnea/ chest pain / pustular production without worsening of any) at 72 h in the ITT population

Secondary: ECR in the mITT, investigator’s assessment of clinical response at SFU visit in the ITTCE-SFU. Additional: clinical response at SFU in the mITT/CE-SFU. By-phenotype treatment outcomes in mITT/CE-SFU visits in mITT/CE-SFU.

Table 1. Early Clinical Response and Clinical Success at SFU

<table>
<thead>
<tr>
<th>Outcome Measure</th>
<th>SOLI (n=158)</th>
<th>MOXI (n=139)</th>
<th>Delta, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT Population</td>
<td>79.3 (344/443)</td>
<td>79.7 (342/434)</td>
<td>-0.46 (-1.61, 5.52)</td>
</tr>
<tr>
<td>MOXI Population</td>
<td>80.3 (139/171)</td>
<td>79.7 (121/152)</td>
<td>+1.6 (1.08, 10.95)</td>
</tr>
<tr>
<td>ESR Population</td>
<td>86.3 (136/159)</td>
<td>86.3 (136/159)</td>
<td>+3.8 (5.16, 12.67)</td>
</tr>
<tr>
<td>Successful SFU</td>
<td>84.6 (367/434)</td>
<td>86.6 (380/429)</td>
<td>+2.0 (4.80, 8.09)</td>
</tr>
<tr>
<td>SOLI</td>
<td>82.2 (133/164)</td>
<td>81.0 (132/165)</td>
<td>+1.2 (3.32, 13.37)</td>
</tr>
</tbody>
</table>

Table 2. SOLI was non-inferior to MOXI in both the ITT and mITT populations.

Figure 3: Solithromycin MIC distribution among S. pneumoniae

Table 3. By-phenotype Treatment Outcomes at Clinical Success at SFU and Outcome for MIC for selected CAP bacteria (ME-SFU population)

Figure 1: Microbiological Diagnoses (mITT population)

Table 4. Solithromycin MIC distribution for macrolide-resistant S. pneumoniae by genotype

References