Superior anti-inflammatory effects of a novel macrolide/fluoroketolide, CEM-101 in monocytic cells

Abstract 3506

Y. Kobayashi, C. Rossios, P. J. Barnes, K. Ito
Airway Disease Section, NHLI, Imperial College London, UK

Rationale:

Macrolides are reported to reduce exacerbation of COPD and also show anti-inflammatory effects in vitro. However the anti-inflammatory efficacies of current macrolides are not optimum. Here we found that CEM-101, a novel macrolide/fluoroketolide (starting Phase 2) which has activities against wide range of bacteria causing pneumonia, showed more potent anti-inflammatory effects than any other macrolides being marketed.

Methods:

Effects of CEM-101 on PMA-induced MMP9 production and LPS-induced IL-8 and TNFα release in U937 monocytic cells have been evaluated and compared with the effects of erythromycin (EM), clarithromycin (CAM), azithromycin (AZM) and telithromycin (TEL).

Results:

CEM-101 concentration-dependently inhibited MMP9/IL-8/TNFα production in U937 with IC50s of 28.9 ± 1.6 µM, 78.2 ± 9.5 µM and 41.6 ± 1.9 µM respectively. In contrast, CAM had 10 times less anti-inflammatory effects than CEM-101. EM, AZM and TEL did not show significant anti-inflammatory effects.

Conclusions:

CEM-101 shows better anti-inflammatory profiles compared with macrolides currently used in clinic, and will be a promising anti-inflammatory and anti-bacterial macrolide/fluoroketolide for the treatment of COPD.