Evaluation of CEM-101, a Novel Fluoroketolide, in a Rat H. influenzae Pulmonary Infection Model.

T. MURPHY¹, S. LITTLE¹, R. WU¹, A. SLEE¹, P. FERNANDES²
¹ViviSource Laboratories, Inc. Waltham, MA, ²Cempra Pharmaceuticals, Chapel Hill, NC

Background:
CEM-101, a clinical candidate for the treatment of community-acquired bacterial pneumonia, previously demonstrated significant gram-positive activity in several animal efficacy models. We evaluated the activity of CEM-101 against H. influenzae, a gram-negative pathogen, utilizing a difficult-to-treat pulmonary infection model.

Methods:
Male Sprague Dawley rats were infected with a macrolide-susceptible strain of H. influenzae. H. influenzae was prepared from a plate culture, adjusted to an OD of 0.1 in saline, and diluted 1:2 in 1% molten agarose for infection. Anesthetized rats were infected intratracheally with 0.5 mL of the bacterial suspension. Rats were treated with CEM-101 or clarithromycin via oral gavage at 5, 24, 48, and 72 hours post-infection. Animals were euthanized 24 or 48 hours after the completion of treatment. The lungs were processed for CFU determination.

Results:
CEM-101 demonstrated significant efficacy, achieving 1 and 2 log₁₀ reductions in CFUs at 32 and 44 mg/kg when assessed at 24 hours post-treatment. This reduction in bio-load persisted when the time of lung harvest was extended to 48 hours post-treatment. At 48 hours post-treatment, 1 and 2 log₁₀ CFU reductions were achieved with 31 and 42 mg/kg of CEM-101. Clarithromycin was unable to elicit a significant reduction in the lung bioburden levels of H. influenzae in this model.

Conclusions:
CEM-101 demonstrated significant efficacy in this difficult-to-treat infection model of H. influenzae by its ability to effect a bactericidal response. Not only did CEM-101 demonstrate reductions in bio-loads at the classic 24-hour post-treatment harvest assessment, but it also demonstrated significant efficacy when the harvest time was extended to 48 hours post-treatment.