The STAM™ NASH model in diabetic C57BL/6J mice fed a high fat diet (Fujii M. et al. 2013), is reproducible and follows a predictable path of steatosis, hepatic inflammation, hepatocellular ballooning degeneration, fibrosis and HCC (hepatocellular carcinoma).

Results Continued

Hepatocellular ballooning

- **Vehicle:** No ballooning
- **SOLI 50 mg/kg QD:** Mild ballooning
- **SOLI 100 mg/kg QD:** Moderate ballooning

Lobular inflammation

- **Vehicle:** No inflammation
- **SOLI 50 mg/kg QD:** Mild inflammation
- **SOLI 100 mg/kg QD:** Moderate inflammation

Steatohepatitis Score

- **Vehicle:** No damage
- **SOLI 50 mg/kg QD:** Mild damage
- **SOLI 100 mg/kg QD:** Moderate damage

The 50 mg/kg QD dose showed the greatest effect, while the 5 mg/kg/day (QD) dose had no effect. There was no increased benefit at the 100 mg/kg QD dose. In order to determine the effect on fibrosis and HCC that reproducibly occurs in the mouse model, the experiment was repeated with treatment initiated from 4-8 weeks after birth (4 weeks of treatment) and 8-12 weeks after birth (4 weeks of treatment). mRNA expression levels for glucose-6-phosphatase and fructose-1,6-bisphosphatase, two enzymes involved in gluconeogenesis, were suppressed.

Effect on Fibrosis

The fibrosis area and the tumor nodules (both size and number) were significantly decreased in the SOLI treated group.

Size and Number of Visible Tumor Nodules

- **Vehicle:** 103.7 (n=8)
- **SOLI 50 mg/kg QD:** 57 (n=8)
- **SOLI 100 mg/kg QD:** 25 (n=8)

Conclusions

- **SOLI** was effective in reducing NASH and significantly reduced NAFLD scores in a diabetes and high fat diet induced NASH mouse model.
- **SOLI** produced statistically significant reduction in inflammation, hepatocellular ballooning degeneration, fibrosis, and HCC at a daily dose that is equivalent or lower than the HED that has been well tolerated and effective in two global Phase 3 trials to treat moderate to moderately severe CAGB.
- **SOLI** was effective in reducing blood glucose, without significant improvement in insulin levels in the NASH mice.
- **SOLI** does not have activity against anaerobic Gram-negative intestinal microflora. Therefore, the anti-NASH activity is not believed to occur as a result of SOLI's 1,6-bisphosphatase and glucose-6-phosphatase in the liver.
- The availability of a large safety database and the data in the NASH mouse model support exploratory development of SOLI for the treatment of NAFLD and NASH in humans.
- An exploratory trial in patients with biopsy-proven NASH is currently underway.

Disclosures

P. Fernandes and D. Oldach are employees of Cempra and receive compensation in salary and option share. P. Gholam is a paid consultant for Cempra. T. Hashiguchi, Y. Shirakata, and H. Yoneyama work at the Stellic Institute in Tokyo, Japan and this work was paid for under contract to Stellic.