Abstract

Background: MRSA, a prevalent pathogen of hospital and community-acquired infections, can be difficult to treat due to resistance. Recently, resistance has emerged to commonly utilized anti-MRSA agents (e.g., linezolid [LZD], daptomycin [DAP], and vancomycin [VAN]). This makes the study of new agents like CEM-102 (fusidic acid) important in combating emerging drug-resistant MRSA. The objective of the present study was to evaluate the in vitro activity of CEM-102 against prevalent community-acquired, hospital-acquired, and epidemic MRSA clones.

Methods: 56 MRSA from the NARSA and Eurofins Medinet repositories were tested for their susceptibility to CEM-102 and comparators (VISA/VRSA isolates) according to current CLSI guidelines. Isolates included those with new resistance phenotypes (VISA/VRSA). MIC90 and MIC100 isolates were cultured from prevalent community (USA2000/USA100), hospital (USA100/USA600), and epidemic clones (e.g., Banter, UK-EMRSA-15/16).

Results: Against the selected resistant MRSA, CEM-102 had an MIC range of 0.06-8 μg/mL, with an MIC90 of 0.12 μg/mL. With the exception of 1 VISA isolate (with an MIC of 1 μg/mL), 2 DAP NS isolates (with MICs of 4 μg/mL), and 1 LZD NS isolate (with an MIC of 8 μg/mL), CEM-102 MICs were 0.06-0.12 μg/mL, against MRSA with rare but emerging resistance phenotypes. Against a subset of 10 community, 10 hospital, and 5 epidemic clones, CEM-102 MICs were 0.06-0.12 μg/mL.

Conclusions: CEM-102 had potent in vitro activity against MRSA NS to currently utilized agents (VAN, LZD, and DAP). CEM-102 was also active against USA100 and USA300 MRSA clones, demonstrating potential for the treatment of MRSA in the US.

Introduction

MRSA are commonly encountered clinically and, though rare, S. aureus with reduced susceptibility to other commonly used Gram-positive agents (vancomycin, linezolid/daptomycin) have emerged.

Fusidic acid is approved for use in Europe and is currently under development in the US for the treatment of acute bacterial skin (ABSSS) due to CEM-102, utilizing a novel oral dosing regimen designed to maximize bioavailability, increase coverage, and minimize resistance development.

This study evaluates the in vitro activity of CEM-102 and other Gram-negative agents against select resistant S. aureus isolates (e.g., VISA/VRSA, linezolid/daptomycin non-susceptible) and prevalent MRSA clones (e.g., USA100 and USA300).

Materials and Methods

- Clinical S. aureus isolates non-susceptible to currently utilized Gram-positive agents were identified from the Eurofins Medinet Repository (Chantilly, VA) and Eurofins Medinet (Chantilly, VA).
- Genetically characterized MRSA (PFGE type USA2000/USA100), hospital-acquired isolates (PFGE type USA500/USA600), and epidemic clones (PFGE type Iberian; British/Sporean, etc.) were also selected from the Eurofins and NARSA repositories with the exception of isolates 10 (Japan). CEM-102 was evaluated for its in vitro activity against new resistance phenotypes and 7 global epidemic strains, 5 isolates were of US origin.
- Selected-resistant S. aureus isolates were tested for susceptibility to CEM-102 and comparator agents by broth microdilution in accordance with CLSI M45-A3 and EUCAST breakpoint criteria.

Results

- Against the pre-selected resistant S. aureus evaluated, CEM-102 had an overall MIC90 of 0.12 μg/mL, several fold lower than the other evaluated agents (Table 1).
- Among the pre-selected resistant S. aureus and MRSA clones, 25% were VISA, 9% were VRSA, 13% were daptomycin non-susceptible, and 13% were linezolid-resistant (Table 1).
- Based on overall MIC distribution (Figure 1A), CEM-102 typically had an MIC of ≤0.12 mg/mL (91%), with few isolates (5%) having MICs >1 μg/mL, and no isolates having a CEM-102 MIC exceeding 8 μg/mL (10-fold lower than the 80 μg/mL maintained in the serum during the proposed CEM-102 dosing regimen).
- The CEM-102 MIC distribution was not notably altered by evaluated resistance phenotype or genotype (Figure 1B), though for the three isolates with CEM-102 MICs of 4-8 μg/mL, two were daptomycin non-susceptible and one was linezolid resistant (Table 3).
- The increased potency of CEM-102 relative to the other agents against the evaluated isolates was apparent by plotting cumulative susceptibility against MIC (Figure 2).
- Evaluated VISA/VRSA isolates (Table 2), though largely susceptible to CEM-102, were commonly resistant to other evaluated classes of agents.
- Hospital-acquired (HA-MRSA), community-acquired (CA-MRSA), and epidemic clones were 100% susceptible to CEM-102, including isolates with resistance across several classes of evaluated agents (e.g., USA100/USA600) (Table 4).

Conclusions

- CEM-102 (Fusidic acid) had potent in vivo activity against selected S. aureus with resistance to currently utilized Gram-positive active agents.
- CEM-102 was also active against clinical isolates of prevalent epidemic, hospital-acquired, and community-acquired clones of MRSA.
- The activity profile of CEM-102 which includes commonly encountered clinical MRSA/VRSA isolates was supported by NIAID.

Acknowledgements

This study was supported by a grant from Cempra Pharmaceuticals. Eurofins would like to acknowledge Parveen Grover and Dinesh Shah for their contributions to this study, and would also like to acknowledge the NARSA program for providing many of the S. aureus utilized in this study.